Parametric Co-Design of Modular Free-Form 2-Manifolds
نویسنده
چکیده
A set of modular 2-manifold surface components has been designed that allows the assembly of free-form geometrical sculptures representing single-sided or double-sided surfaces ranging from genus 2 to genus 22. The paper describes the interplay between parameters that define the overall symmetry of the whole structure and other parameters that define the geometry of the individual modular components.
منابع مشابه
Investigation the status of instructional design with modular method in medical education
Background and Goal: Modular method is a form of in-service training which provides job skills into a form of independent training of audiences. Each of modular provides specific skill and at the same time besides the other modular led to a new and comprehensive skill. In fact, any educational modular is a set of knowledge, attitudes and skills which by using them it can be possible to do ...
متن کاملRicci tensor for $GCR$-lightlike submanifolds of indefinite Kaehler manifolds
We obtain the expression of Ricci tensor for a $GCR$-lightlikesubmanifold of indefinite complex space form and discuss itsproperties on a totally geodesic $GCR$-lightlike submanifold of anindefinite complex space form. Moreover, we have proved that everyproper totally umbilical $GCR$-lightlike submanifold of anindefinite Kaehler manifold is a totally geodesic $GCR$-lightlikesubmanifold.
متن کاملElliptic Genus of Calabi–yau Manifolds and Jacobi and Siegel Modular Forms
In the paper we study two types of relations: a one is between the elliptic genus of Calabi–Yau manifolds and Jacobi modular forms, another one is between the second quantized elliptic genus, Siegel modular forms and Lorentzian Kac–Moody Lie algebras. We also determine the structure of the graded ring of the weak Jacobi forms with integral Fourier coefficients. It gives us a number of applicati...
متن کاملFinite Element Wavelets on Manifolds
Preprint No. 1199, Department of Mathematics, University of Utrecht, June 2001. Submitted to IMA J. Numer. Anal. We construct locally supported, continuous wavelets on manifolds Γ that are given as the closure of a disjoint union of general smooth parametric images of an n-simplex. The wavelets are proven to generate Riesz bases for Sobolev spaces Hs(Γ) when s ∈ (−1, 3 2 ), if not limited by th...
متن کاملNormal forms of Hopf Singularities: Focus Values Along with some Applications in Physics
This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...
متن کامل